
Message Header
The C type definition for the message header is as
follows (from the header file mach/message.h):
typedef struct {
 unsigned int msg_unused : 24,
 msg_simple : 8;
 unsigned int msg_size;
 int msg_type;
 port_t msg_local_port;
 port_t msg_remote_port;
 int msg_id;
msg_header_t;¬} msg_header_t;

The msg_simple field indicates whether the message

is simple or nonsimple; the message is simple if its
body contains neither ports nor out-of-line data
(pointers).   
The msg_size field specifies the size of the message
to be sent, or the maximum size of the message that
can be received.    When a message is received, Mach
sets msg_size to the size of the received message.   
The size includes the header and in-line data and is
given in bytes.
The msg_type field specifies the general type of the
message.    For hand-built messages, it's
MSG_TYPE_NORMAL; MiG-generated servers use the
type MSG_TYPE_RPC.    Other values for the

msg_type field are defined in the header files
mach/message.h and mach/msg_type.h.
The msg_local_port and msg_remote_port fields
name the ports on which a message is to be received
or sent.    Before a message is sent, msg_local_port
must be set to the port to which a reply, if any, should
be sent; msg_remote_port must specify the port to
which the message is being sent.    Before a message
is received, msg_local_port must be set to the port
or port set to receive on.    When a message is
received, Mach sets msg_local_port to the port the
message is received on, and msg_remote_port to
the port any reply should be sent to (the sender's
msg_local_port).

The msg_id field can be used to identify the meaning
of the message to the intended recipient.    For
example, a program that can send two kinds of
messages should set the msg_id field to indicate to
the receiver which kind of message is being sent.   
MiG automatically generates values for the msg_id
field.

Message Body
The body of a message consists of an array of type
descriptors and data.    Each type descriptor contains

the following structure:
typedef struct {

// Type of data
unsigned int msg_type_name : MSG_TYPE_BYTE,
// Number of bits per item
msg_type_size : 8,
// Number of items
msg_type_number : 12,
// If true, data follows; else a ptr to data

follows
msg_type_inline : 1,
// Name, size, number follow
msg_type_longform : 1,
// Deallocate port rights or memory
msg_type_deallocate : 1,
msg_type_unused : 1;

msg_type_t;¬} msg_type_t;

The msg_type_name field describes the basic type
of data comprising this object.    The system-defined
data types include:
· Ports, including combinations of send and
receive rights.
· Port and port set names.    This is the same
language data type as port rights, but the message
only carries a task's name for a port and doesn't
cause any transferral of rights.
· Simple data types, such as integers, characters,
and floating-point values.

The msg_type_size field indicates the size in bits of
the basic object named in the msg_type_name field.
The msg_type_number field indicates the number of
items of the basic data type present after the type
descriptor.
The msg_type_inline field indicates that the actual
data is included after the type descriptor; otherwise,
the word following the descriptor is a pointer to the
data to be sent.
The msg_type_longform field indicates that the
name, size, and number fields were too long to fit into
the msg_type_t structure.    These fields instead
follow the msg_type_t structure, and the type

descriptor consists of a msg_type_long_t:
typedef struct {
 msg_type_t msg_type_header;
 short msg_type_long_name;
 short msg_type_long_size;
 int msg_type_long_number;
} msg_type_long_t;

When msg_type_deallocate is nonzero, it indicates
that Mach should deallocate this data item from the
sender's address space after the message is queued. 
You can deallocate only port rights or out-of-line data.
A data item, an array of data items, or a pointer to
data follows each type descriptor.

Setting Up a Simple Message
As described earlier, a message is simple if its body
doesn't contain any ports or out-of-line data
(pointers).    The msg_remote_port field must
contain the port the message is to be sent to.    The
msg_local_port field should be set to the port a
reply message (if any) is expected on.
The following example shows the creation of a simple
message.    Because every item in the body of the
message is of the same type (int), only one type
descriptor is necessary, even though the items are in

two different fields.   
#define BEGIN_MSG 0 /* Constants to identify the

different messages */
#define END_MSG 1
#define REPLY_MSG 2

#define MAXDATA 3

struct simp_msg_struct {
msg_header_t h; /* message header */
msg_type_t t; /* type descriptor

*/
int inline_data1; /* start of data array*/
int inline_data2[2];

};
struct simp_msg_struct msg_xmt;
port_t comm_port, reply_port;

/* Fill in the message header. */
msg_xmt.h.msg_simple = TRUE;
msg_xmt.h.msg_size = sizeof(struct simp_msg_struct);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_local_port = reply_port;
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_id = BEGIN_MSG;

/* Fill in the type descriptor. */
msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;
msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = TRUE;

msg_xmt.t.msg_type_longform = FALSE;
msg_xmt.t.msg_type_deallocate = FALSE;

/* Fill in the array of data items. */
msg_xmt.inline_data1 = value1;
msg_xmt.inline_data2[1] = value2;
msg_xmt.inline_data2[2] = value3;

port_allocate()

SUMMARY Create a port

SYNOPSIS #import <mach/mach.h>
port_allocate;¬kern_return_t port_allocate(task_t

task, port_name_t *port_name)

ARGUMENTS task:    The task in which the new port
is created (for example, use task_self() to specify
the caller's task).
port_name:    Returns the name used by task for the
new port.

DESCRIPTION The function port_allocate() causes a
port to be created for the specified task; the resulting
port is returned in port_name.    The target task
initially has both send and receive rights to the port.   
The new port isn't a member of any port set.

EXAMPLE port_t myport;
kern_return_t error;

if ((error=port_allocate(task_self(), &myport)) !=
KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    A port has been
allocated.
KERN_INVALID_ARGUMENT:    task was invalid.
KERN_RESOURCE_SHORTAGE:    No more port slots are
available for this task.

DPSAddPort;¬void DPSAddPort(port_t port,
DPSPortProc handler, int maxMsgSize, void *userData,
int priority)
void DPSRemovePort(port_t port)

DESCRIPTION DPSAddPort() registers the function
handler to be called each time your application asks
for an event or peeks at the event queue.    The
function is called provided the following are true:
· The Mach port port    must be valid and it must
hold a message waiting to be read.
· priority, an integer from 0 to 30, must be equal

to or greater than the application's current priority
threshold.    See DPSAddTimedEntry() for a further
explanation.
DPSPortProc, handler's defined type, takes the form
void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was
received at the port and userData is the same pointer
that was passed as the fourth argument to
DPSAddPort().    The userData pointer is provided as
a convenience, allowing you to pass arbitrary data to
handler.

#import <mach/cthreads.h>

cthread_fork;¬cthread_t cthread_fork(any_t
(*function)(), any_t arg)

DESCRIPTION The function cthread_fork() takes
two arguments:    a function for the new thread to
execute, and an argument to this function.    The
cthread_fork() function creates a new thread of
control in which the specified function is executed
concurrently with the caller's thread.    This is the sole
means of creating new threads.
The any_t type represents a pointer to any C type.   
The cthread_t type is an integer-size handle that
uniquely identifies a thread of control.    Values of type

cthread_t will be referred to as thread identifiers.   
Arguments larger than a pointer must be passed by
reference.    Similarly, multiple arguments must be
simulated by passing a pointer to a structure
containing several components.    The call to
cthread_fork() returns a thread identifier that can
be passed to cthread_join() or cthread_detach().   
Every thread must be either joined or detached
exactly once.

cthread_abort;¬kern_return_t
cthread_abort(cthread_t t)

DESCRIPTION This function provides the functionality of

thread_abort() to C threads.    The cthread_abort()
function interrupts system calls; it's usually used
along with thread_suspend(), which stops a thread
from executing any more user code.    Calling
cthread_abort() on a thread that isn't suspended is
risky, since it's difficult to know exactly what system
trap, if any, the thread might be executing and
whether an interrupt return would cause the thread to
do something useful.
See thread_abort() for a full description of the use
of this function.

thread_set_state;¬kern_return_t

thread_set_state(thread_t target_thread, int flavor,
thread_state_data_t new_state, unsigned int
new_state_count)

DESCRIPTION The function thread_get_state()
returns the state component (that is, the machine
registers) of target_thread as specified by flavor.    The
old_state is an array of integers that's provided by the
caller and returned filled with the specified
information.    You should set old_state_count to the
maximum number of integers in old_state.    On
return, old_state_count is equal to the actual number
of integers in old_state.
The function thread_set_state() sets the state

component of target_thread as specified by flavor.   
The new_state is an array of integers that the caller
fills.    You should set new_state_count to the number
of elements in new_state.    The entire set of registers
is reset.
target_thread must not be thread_self() for either of
these calls.
The state structures are defined in the header file
mach/machine/thread_status.h.

AppKitProgramming;¬AppKit
Programming

AppKit_Application;¬Class: Application
workspace;¬workspace
+ (id <NXWorkspaceRequestProtocol>)workspace
Returns the Workspace Manager. You need that in
order to send it a message asking it to do such
things as open a file. The Workspace Manager
responds to the NXWorkspaceRequest protocol.
Here's an example of asking the Workspace
Manager for the icon for the file "x.draw":
NXImage *i = [[Application workspace]
getIconForFile:"x.draw"];

